Waveguides for walking droplets

Posted by on Oct 12, 2015 in Bibliography, Core Bibliography | 0 comments

Filoux, B., Hubert, M., Schlagheck, P., & Vandewalle, N. (2015). Waveguides for walking droplets. arXiv preprint arXiv:1507.08228.

When gently placing a droplet onto a vertically vibrated bath, a drop can bounce permanently. Upon increasing the forcing acceleration, the droplet is propelled by the wave it generates and becomes a walker with a well de ned speed. We investigate the con nement of a walker in different rectangular cavities, used as waveguides for the Faraday waves emitted by successive droplet bounces. By studying the walker velocities, we discover that 1d con nement is optimal for narrow channels. We also propose an analogy with waveguide models based on the observation of the Faraday instability within the channels.



Read More

On the analogy of quantum wave-particle duality with bouncing droplets

Posted by on Sep 26, 2015 in Bibliography, Core Bibliography, Theory Bibliography | 0 comments

Richardson, C. D., Schlagheck, P., Martin, J., Vandewalle, N., & Bastin, T. (2014). On the analogy of quantum wave-particle duality with bouncing droplets.arXiv preprint arXiv:1410.1373.

We explore the hydrodynamic analogues of quantum wave-particle duality in the context of a bouncing droplet system which we model in such a way as to promote comparisons to the de Broglie-Bohm interpretation of quantum mechanics. Through numerical means we obtain single-slit dif raction and double-slit interference patterns that strongly resemble those reported in experiment and that re ect a striking resemblance to quantum di raction and interference on a phenomenological level. We, however, identify evident di erences from quantum mechanics which arise from the governing equations at the fundamental level.


doubleSlit sinfgleSlit


Read More