Smoothed Particles Hydrodynamics numerical simulations of droplets walking on viscous vibrating fluid

Posted by on Jan 25, 2016 in Bibliography, Core Bibliography, Numerical Simulation | 0 comments

Molteni, D., Vitanza, E., & Battaglia, O. R. (2016). Smoothed Particles Hydrodynamics numerical simulations of droplets walking on viscous vibrating fluid. arXiv preprint arXiv:1601.05017.

Abstract :

“We study the phenomenon of the “walking droplet”, by means of numerical fluid dynamics simulations using a standard version of the Smoothed Particle Hydrodynamics method. The phenomenon occurs when a millimetric drop is released on the surface of an oil of the same composition contained in a container subjected to vertical oscillations of frequency and amplitude close to the Faraday instability threshold. At appropriate values of the parameters of the system under study, the liquid drop jumps permanently on the surface of the vibrating fluid forming a localized wave-particle system, reminding the behavior of a wave particle quantum system as suggested by de Broglie. In the simulations, the drop and the wave travel at nearly constant speed, as observed in experiments. In our study we made relevant simplifying assumptions, however we observe that the wave-drop coupling is easily obtained. This fact suggests that the phenomenon may occur in many contexts and opens the possibility to study the phenomenon in an extremely wide range of physical configurations.”

 

http://arxiv.org/ftp/arxiv/papers/1601/1601.05017.pdf

sph

Read More