Domino, L., Tarpin, M., Patinet, S., & Eddi, A. (2016). Faraday wave lattice as an elastic metamaterial. arXiv preprint arXiv:1601.08024.

(Also on PhysRev E.)

Metamaterials enable the emergence of novel physical properties due to the existence of an underlying sub-wavelength structure. Here, we use the Faraday instability to shape the uid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an
e ffective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.

Faraday wave lattice as an elastic metamaterial