Interaction of two walkers: Wave-mediated energy and force

Posted by on Sep 26, 2015 in Bibliography, Core Bibliography | 0 comments

Borghesi, C., Moukhtar, J., Labousse, M., Eddi, A., Fort, E., & Couder, Y. (2014). Interaction of two walkers: Wave-mediated energy and force. Physical Review E, 90(6), 063017.

A bouncing droplet, self-propelled by its interaction with the waves it generates, forms a classical wave-particle association called a “walker.” Previous works have demonstrated that the dynamics of a single walker is driven by its global surface wave field that retains information on its past trajectory. Here, we investigate the energy stored in this wave field for two coupled walkers and how it conveys an interaction between them. For this purpose, we characterize experimentally the “promenade modes” where two walkers are bound, and propagate together. Their possible binding distances take discrete values, and the velocity of the pair depends on their mutual binding. The mean parallel motion can be either rectilinear or oscillating. The experimental results are recovered analytically with a simple theoretical framework. A relation between the kinetic energy of the droplets and the total energy of the standing waves is established.


Read More

Wavelike statistics from pilot-wave dynamics in a circular corral

Posted by on Aug 18, 2013 in Bibliography, Core Bibliography | 2 comments

Harris, D. M., Moukhtar, J., Fort, E., Couder, Y., & Bush, J. W. (2013). Wavelike statistics from pilot-wave dynamics in a circular corral. Physical Review E88(1), 011001.

Abstract : Bouncing droplets can self-propel laterally along the surface of a vibrated fluid bath by virtue of a resonant interaction with their own wave field. The resulting walking droplets exhibit features reminiscent of microscopic quantum particles. Here we present the results of an experimental investigation of droplets walking in a circular corral. We demonstrate that a coherent wavelike statistical behavior emerges from the complex underlying dynamics and that the probability distribution is prescribed by the Faraday wave mode of the corral. The statistical behavior of the walking droplets is demonstrated to be analogous to that of electrons in quantum corrals.

wavelike Statistics


Statistical behavior of a walking droplet in a confined geometry


Read More