Self-propulsion and crossing statistics under random initial conditions

Posted by on Oct 17, 2017 in Bibliography, Core Bibliography | 0 comments

ABSTRACT : “We investigate the crossing of an energy barrier by a self-propelled particle described by a Rayleigh friction term. We show that a sharp transition between low and large amplitude of the external force field occurs. It corresponds to a saddle point transition in the velocity flow phase space, and would therefore occur for any type of force field. We use this approach to describe the results obtained by Eddi et al. [Phys. Rev. Lett. 102, 240401 (2009)] in 2009 who studied the interaction between a drop propelled by its own generated wave field and a submarine obstacle. It has been shown that this wave particle entity can overcome barrier of potential, suggesting the existence of a ”macroscopic tunnel effect”. We show that the effect of self-propulsion is sufficiently enough to generate crossing of high energy barrier. By assuming a random distribution of initial angles, we define a probability to cross the barrier of potential that matches with the data obtained by Eddi et al.. This probability appears similar to the one encountered in statistical physics for Hamiltonian systems i.e. a Boltzmann exponential law.”

Hubert, M., Labousse, M., & Perrard, S. (2017). Self-propulsion with random initial conditions: how to cross an energy barrier?. arXiv preprint arXiv:1701.01937.

 

Click to access 1701.01937.pdf

https://www.researchgate.nethttps://www.researchgate.net/profile/Matthieu_Labousse/publication/317945959_Self-propulsion_and_crossing_statistics_under_random_initial_conditions/links/59632e4f458515a3575449d5/Self-propulsion-and-crossing-statistics-under-random-initial-conditions.pdf

 

Read More

Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction

Posted by on Jan 22, 2017 in Bibliography, Core Bibliography | 0 comments

Abstract : The back-reaction of a radiated wave on the emitting source is a general problem. In the most general case, back-reaction on moving wave sources depends on their whole history. Here we study a model system in which a pointlike source is piloted by its own memory-endowed wave field. Such a situation is implemented experimentally using a self-propelled droplet bouncing on a vertically vibrated liquid bath and driven by the waves it generates along its trajectory. The droplet and its associated wave field form an entity having an intrinsic dual particle-wave character. The wave field encodes in its interference structure the past trajectory of the droplet. In the present article we show that this object can self-organize into a spinning state in which the droplet possesses an orbiting motion without any external interaction. The rotation is driven by the wave-mediated attractive interaction of the droplet with its own past. The resulting “memory force” is investigated and characterized experimentally, numerically, and theoretically. Orbiting with a radius of curvature close to half a wavelength is shown to be a memory-induced dynamical attractor for the droplet’s motion.

Labousse, M., Perrard, S., Couder, Y., & Fort, E. (2016). Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction. Physical Review E, 94(4), 042224.

self orbiting

Available on ResearchGate (Free login required)

 

Read More

Wave-Based Turing Machine: Time Reversal and Information Erasing

Posted by on Sep 17, 2016 in Bibliography, Core Bibliography | 0 comments

Perrard, S., Fort, E., & Couder, Y. (2016). Wave-Based Turing Machine: Time Reversal and Information Erasing. Physical Review Letters, 117(9), 094502.

 

ABSTRACT

The investigation of dynamical systems has revealed a deep-rooted difference between waves and objects regarding temporal reversibility and particlelike objects. In nondissipative chaos, the dynamic of waves always remains time reversible, unlike that of particles. Here, we explore the dynamics of a wave-particle entity. It consists in a drop bouncing on a vibrated liquid bath, self-propelled and piloted by the surface waves it generates. This walker, in which there is an information exchange between the particle and the wave, can be analyzed in terms of a Turing machine with waves as the information repository. The experiments reveal that in this system, the drop can read information backwards while erasing it. The drop can thus backtrack on its previous trajectory. A transient temporal reversibility, restricted to the drop motion, is obtained in spite of the system being both dissipative and chaotic.

 

67.Wave-Based Turing Machine Time Reversal and Information Erasing

Available at Researchgate (requires free login)

https://www.researchgate.net/publication/307082497_Wave-Based_Turing_Machine_Time_Reversal_and_Information_Erasing

 

Read More

Pilot-wave dynamics in a harmonic potential : Quantization and stability of circular orbits

Posted by on May 2, 2016 in Bibliography, Core Bibliography, Theory Bibliography | 0 comments

Labousse, M., Oza, A. U., Perrard, S., & Bush, J. W. (2016). Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits.Physical Review E, 93(3), 033122.

“We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet’s horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed.”

Pilot-wave dynamics in a harmonic potential Quantization and stability of circular orbits

 

http://arxiv.org/pdf/1604.07394

Read More

Build-up of macroscopic eigenstates in a memory-based constrained system

Posted by on Sep 25, 2015 in Bibliography, Core Bibliography, Theory Bibliography | 0 comments

Labousse, M., Perrard, S., Couder, Y., & Fort, E. (2014). Build-up of macroscopic eigenstates in a memory-based constrained system. New Journal of Physics, 16(11), 113027.

A bouncing drop and its associated accompanying wave forms a walker. Based on previous works, we show in this article that it is possible to formulate a simple theoretical framework for the walker dynamics. It relies on a time scale decomposition corresponding to the effects successively generated when the memory effects increase. While the short time scale effect is simply responsible for the walkerʼs propulsion, the intermediate scale generates spontaneously pivotal structures endowed with angular momentum. At an even larger memory
scale, if the walker is spatially confined, the pivots become the building blocks of a self-organization into a global structure. This new theoretical framework is applied in the presence of an external harmonic potential, and reveals the underlying mechanisms leading to the emergence of the macroscopic spatial organization reported by Perrard et al (2014 Nature Commun. 5 3219).

https://hal-univ-artois.archives-ouvertes.fr/hal-01084731/document

 

buildup

 

Read More

Une mémoire ondulatoire : États propres, Chaos et Probabilités

Posted by on Jun 12, 2015 in Bibliography, Core Bibliography, Thesis | 0 comments

Perrard, S. (2014). Une mémoire Ondulatoire: états propres, chaos et probabilités (Doctoral dissertation, Paris 7)

Résumé : Une goutte rebondissant sur un bain de liquide en vibration verticale peut se mettre spontanément en mouvement, sous l’action des ondes qu’elle a elle-même générées. Celles ci, appelées ondes de Faraday sont entretenues par la vibration du bain durant un temps de mémoire qui peut être contrôlé expérimentalement. Le champ d’ondes stationnaires généré par la goutte contient ainsi dans ses motifs d’interférence une mémoire de la trajectoire précédemment suivie. L’entité résultante appelée marcheur est caractérisée par cette interaction entre la goutte et les ondes qui l’entourent, via la mémoire de chemin. Cette thèse est consacrée à l’étude expérimentale et théorique de cette mémoire de chemin. Dans ce but, une goutte de liquide encapsulant un volume de ferrofluide est piégée dans un puits de potentiel harmonique d’origine magnétique. La goutte sera ainsi amenée à interagir avec les ondes qu’elle a précédemment générées. Ce confinement induit un processus d’auto-organisation entre la goutte et l’onde sous-jacente qui mène à des comportements de type ondulatoire pour une particule. Les notions de quantifications ou de probabilité de mesure d’un état propre peuvent ainsi être appliquées au cas d’un marcheur. Ces comportements révèlent que le marcheur est un exemple d’objet étendu en temps qui ne peut être réduit à une approximation ponctuelle rappelant, dans un tout autre contexte, la théorie de l’onde pilote développée par de Broglie au début du XXème siècle

 

A droplet bouncing on a vertically vibrated liquid bath can be self-propelled by the surface waves it generates. Theses Faraday waves are sustained by the vertical bath vibration for a memory time which can be tuned experimentally. The wave field thus contains in its interference pattern a memory of the past-trajectory. The resulting entity called a walker is characterized by the interaction between the drop and its surrounding waves through this path-memory. This thesis is devoted to an experimental and theoretical investigation of such a wave-mediated path-memory. For this purpose a bouncing drop is magnetically loaded with a droplet of ferrofluid and can then be trapped in an harmonie well. The drop is thus forced to interact with its own path. The confinement induces a self-organization process between the particle and its wave packet, leading to wave-type behavior for a particle. Notions such quantization or probability of measuring an eigenstate can thus be used for the walker dynamics description. These features originate from the temporal coherence of the walker’ s dynamics. In that sense, the walker is an entity extended in time, we cannot reduce to a point-like approximation. It reminds us, in another context, the pilot wave theory developped by de Broglie at the beginning of the XXst century.

https://tel.archives-ouvertes.fr/tel-01158368/document

Read More

Chaos Driven by Interfering Memory

Posted by on May 12, 2015 in Bibliography, Core Bibliography | 0 comments

Perrard, S., Labousse, M., Fort, E., & Couder, Y. (2014). Chaos driven by interfering memory. Physical review letters, 113(10), 104101.

 

The transmission of information can couple two entities of very different nature, one of them serving as a memory for the other. Here we study the situation in which information is stored in a wave field and serves as a memory that pilots the dynamics of a particle. Such a system can be implemented by a bouncing drop generating surface waves sustained by a parametric forcing. The motion of the resulting “walker” when confined in a harmonic potential well is generally disordered. Here we show that these trajectories correspond to chaotic regimes characterized by intermittent transitions between a discrete set of states. At any given time, the system is in one of these states characterized by a double quantization of size and angular momentum. A low dimensional intermittency determines their respective probabilities. They thus form an eigenstate basis of decomposition for what would be observed as a superposition of states if all measurements were intrusive

https://hal.archives-ouvertes.fr/hal-01061415/document

chaosDrivenByInterferingMemory

 

Read More

Self-organization into quantized eigenstates of a classical wave-driven particle

Posted by on Jul 7, 2014 in Bibliography, Core Bibliography | 0 comments

Perrard, S., Labousse, M., Miskin, M., Fort, E., & Couder, Y. (2014). Self-organization into quantized eigenstates of a classical wave-driven particle.Nature communications5.

A growing number of dynamical situations involve the coupling of particles or singularities with physical waves. In principle these situations are very far from the wave particle duality at quantum scale where the wave is probabilistic by nature. Yet some dual characteristics were observed in a system where a macroscopic droplet is guided by a pilot wave it generates. Here we investigate the behaviour of these entities when confined in a two-dimensional harmonic potential well. A discrete set of stable orbits is observed, in the shape of successive generalized Cassinian-like curves (circles, ovals, lemniscates, trefoils and so on). Along these specific trajectories, the droplet motion is characterized by a double quantization of the orbit spatial extent and of the angular momentum. We show that these trajectories are intertwined with the dynamical build-up of central wave-field modes. These dual self-organized modes form a basis of eigenstates on which more complex motions are naturally decomposed.

http://www.nature.com/ncomms/2014/140130/ncomms4219/full/ncomms4219.html

http://arxiv.org/ftp/arxiv/papers/1402/1402.1423.pdf

Quantization of trajectories of a dotwave in a harmonic potential

Read More

Effets de quantification d’une association onde-particule soumise à une force centrale

Posted by on Mar 23, 2014 in Bibliography, Core Bibliography | 0 comments

Perrard, S., Labousse, M., Miskin, M., Fort, E., & Couder, Y. Effets de quantification d’une association onde-particule soumise à une force centrale.Résumés des exposés de la 16e Rencontre du Non-Linéaire Paris 2013, 68.

http://nonlineaire.univ-lille1.fr/SNL/media/2012/CR/Perrard.pdf

eigenstates in circular cavity

 

 

 

 

 

 

Read More