Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

Posted by on Oct 12, 2016 in Bibliography, Core Bibliography | 0 comments

Andersen, A., Madsen, J., Reichelt, C., Ahl, S. R., Lautrup, B., Ellegaard, C., … & Bohr, T. (2015). Double-slit experiment with single wave-driven particles and its relation to quantum mechanics. Physical Review E, 92(1), 013006.

ABSTRACT :

In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

 

70. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

 

http://sci-hub.bz/10.1103/physreve.92.013006#

 

Read More

Comment on Y. Couder and E. Fort: Single-Particle Di ffraction and Interference at a Macroscopic Scale Phys. Rev. Lett. 97, 154101 (2006).

Posted by on Jul 7, 2014 in Core Bibliography | 0 comments

Andersen, A., Madsen, J., Reichelt, C., Ahl, S. R., Lautrup, B., Ellegaard, C., … & Bohr, T. (2014). Comment on Y. Couder and E. Fort:” Single-Particle Diffraction and Interference at a Macroscopic Scale”, Phys. Rev. Lett.(2006).arXiv preprint arXiv:1405.0466.

Where a danish team argue that Couder’sDouble Slit Experiment reported in  Single-Particle Diffraction and Interference at a Macroscopic Scale   is not convincing.

They tried to replicate the experiment but they did not manage.

 

Plus : a quick report of a numerical experimentation of Schrödinger equation with a “”walker-like”  source term

 

Abstract :

In a paper from 2006, Couder and Fort [1] describe a version of the famous double slit experiment performed with drops bouncing on a vibrated fluid surface, where interference in the particle statistics is found even though it is possible to determine unambiguously which slit the “walking” drop passes. It is one of the first papers in an impressive series, showing that such walking drops closely resemble de Broglie waves and can reproduce typical quantum phenomena like tunneling and quantized states [2–13]. The double slit experiment is, however, a more stringent test of quantum mechanics, because it relies upon superposition and phase coherence. In the present comment we first point out that the experimental data presented in [1] are not convincing, and secondly we argue that it is not possible in general to capture quantum mechanical results in a system, where the trajectory of the particle is well-defined.

http://arxiv.org/pdf/1405.0466.pdf

 

Keywords : Madelung-Bohm equation

Read More