Nonlinear Generation of Vorticity by Surface Waves

Posted by on May 21, 2016 in Bibliography, Extended Bibliography | 0 comments

Filatov, S. V., Parfenyev, V. M., Vergeles, S. S., Brazhnikov, M. Y., Levchenko, A. A., & Lebedev, V. V. (2016). Nonlinear Generation of Vorticity by Surface Waves. Physical review letters, 116(5), 054501.

We demonstrate that waves excited on a fluid surface produce local surface rotation owing to hydrodynamic nonlinearity. We examine theoretically the effect and obtain an explicit formula for the vertical vorticity in terms of the surface elevation. Our theoretical predictions are confirmed by measurements of surface motion in a cell with water where surface waves are excited by vertical and harmonic shaking the cell. The experimental data are in good agreement with the theoretical predictions. We discuss physical consequences of the effect.

Nonlinear Generation of Vorticity by Surface Waves

http://ssver.itp.ac.ru/site/publications/Filatov_2016_PRL.pdf

Read More

Displacement of an Electrically Charged Drop on a Vibrating Bath

Posted by on Apr 10, 2016 in Bibliography, Extended Bibliography | 0 comments

Brandenbourger, M., Vandewalle, N., & Dorbolo, S. (2016). Displacement of an Electrically Charged Drop on a Vibrating Bath. Physical review letters, 116(4), 044501.

In this work, the manipulation of an electrically charged droplet bouncing on a vertically vibrated, bath is investigated. When a horizontal, uniform and static electric eld is applied to it, a motion is induced. The droplet is accelerated when the droplet is small. On the other hand, large droplets appear to move with a constant speed that depends linearly on the applied electrical eld. In the latter regime, high speed imaging of one bounce reveals that the droplet experiences an acceleration due to the electrical force during the ight and decelerates to zero when interacting with the surface of the bath. Thus, the droplet moves with a constant average speed on a large time scale. We propose a criterion based on the force necessary to move a charged droplet at the surface of the
bath to discriminate between constant speed and accelerated droplet regimes.

Displacement of an Electrically Charged Drop on a Vibrating Bath

 

http://orbi.ulg.ac.be/bitstream/2268/194253/1/PhysRevLett.116.044501.pdf

Read More

Parametrically excited water surface ripples as ensembles of oscillons

Posted by on Sep 24, 2015 in Bibliography, Extended Bibliography | 0 comments

Shats, M., Xia, H., & Punzmann, H. (2012). Parametrically excited water surface ripples as ensembles of oscillons. Physical review letters, 108(3), 034502.

We show that ripples on the surface of deep water which are driven parametrically by monochromatic vertical vibration represent ensembles of oscillating solitons, or quasi-particles, rather than
waves. Horizontal mobility of oscillons determines the broadening of spectral lines and transitions from chaos to regular patterns. It is found that microscopic additions of proteins to water dra-
matically a ect the oscillon mobility and drive transitions from chaos to order. The shape of the oscillons in physical space determines the shape of the frequency spectra of the surface ripple.

http://people.physics.anu.edu.au/~mgs112/papers/2012_PRL_Shats_oscillons.pdf

 

oscillon

Read More

Controlled double-slit electron diffraction : reproduction of the famous Feynman 1965 thought experiment.

Posted by on Feb 15, 2014 in Bibliography, Blog, Extended Bibliography | 0 comments

Bach, R., Pope, D., Liou, S. H., & Batelaan, H. (2013). Controlled double-slit electron diffraction. New Journal of Physics15(3), 033018.

http://iopscience.iop.org/1367-2630/15/3/033018/pdf/1367-2630_15_3_033018.pdf

And some movies of the interference pattern build-up :

http://iopscience.iop.org/1367-2630/15/3/033018/media

 

The famous Feynman thought experiment reproduced ! ((cf. Feynman Lectures on Physics, vol III, figures 1–3,))

 

controlled double slit electron diffraction

 

 

Read More

Real-time single-molecule imaging of quantum interference

Posted by on Apr 8, 2013 in Bibliography, Extended Bibliography | 1 comment

Juffmann, T., Milic, A., Müllneritsch, M., Asenbaum, P., Tsukernik, A., Tüxen, J., … & Arndt, M. (2012). Real-time single-molecule imaging of quantum interference. Nature nanotechnology7(5), 297-300

http://www.physics.kku.ac.th/forum/sites/default/files/Real-time%20single-molecule%20imaging%20of%20quantum%20interference.pdf

This experiment  isn’t about droplet, but it shows full 2-dimensionnal build-up of quantum interference pattern in real time for Phtalocyanine molecules.

Read More