Emergent quantization of trajectories in a square box

heligone@dotwave.org

Goal of the experiment :

A walking droplet is placed in a square box, at the onset of Faraday thresold.
The trajectory of the droplet is mapped.
In the long time limit, does a self-interference pattern appear? what's its shape?
How does it relate to the square cavity surface wave eigen-modes?
cf. experiment by Bush et al. : in a circular corral
http://dotwave.org/wavelike-statistics-from-pilot-wave-dynamics-in-a-circularcorral/

In short, we try to reproduce the experiment of Bush et al, but in a square box.

This movie presents the goal and means of the experiment :
https://www.youtube.com/watch?v=nVtnKbCXqKg

First result :

A walking droplet in a square cavity shows random motion, but with time, its trajectory is building a statistic reminiscent of the resonant mode of the cavity.

This can be seen by the naked eye in this movie excerpt :

https://www.youtube.com/watch?v=lYnHZqU7Hkk

This is then confirmed with optical tracking measurment of the trajectory :

Trajectory of the walking droplet

The position distribution (\sim probability density) is then computed :

Probabilty density

